Personalized Page Generation using Data, Science, and Algorithms

Justin Basilico
Page Algorithms Engineering

July 30, 2015
interested in high-quality recommendations

- Proxy question:
 - Accuracy in predicted rating
 - Measured by root mean squared error (RMSE)
 - Improve by 10% = $1 million!

- Data size:
 - 100M ratings (back then “almost massive”)
Change of focus

2006

NETFLIX

2015

NETFLIX
Netflix Scale

- > 65M members
- > 50 countries
- > 1000 device types
- Hours: > 3B/month
- Plays: > 100M/day
- Log 100B events/day
- 36.5% of peak US downstream traffic
Where we use Data Science?

- Personalization
- Search
- *Product experimentation*
- Content buying
- Content delivery
- Streaming quality
- Marketing effectiveness
- Predicting retention
- Fraud detection
- ...

Data-driven Company
Approach to Recommendation

“Emmy Winning”

Approach to Recommendation
Goal

Help members find content to watch and enjoy to maximize member satisfaction and retention
Everything is a Recommendation

Over 80% of what people watch comes from our recommendations

Recommendations are driven by Machine Learning
Top Picks

Personalization awareness

Top Picks for Justin

Diversity
Personalized genres

- **Genres** focused on user interest
 - Derived from **tag** combinations
 - Provide **context** and **evidence**

- How are they generated?
 - **Implicit**: Based on recent plays, ratings & other interactions
 - **Explicit**: Taste preferences
Similarity

- Recommend videos similar to one you’ve liked
- “Because you watched” rows
- Pivots
 - Video information page
 - In response to user actions (search, list add, …)
Science and Data
Machine Learning Approach

- Problem
- Data
- Model
- Algorithm
- Metrics
Data

- Plays
 - Duration, bookmark, time, device, ...
- Ratings
- Metadata
 - Tags, synopsis, cast, ...
- Impressions
- Interactions
 - Search, list add, scroll, ...
Models & Algorithms

- Regression (Linear, logistic, elastic net)
- SVD and other Matrix Factorizations
- Factorization Machines
- Restricted Boltzmann Machines
- Deep Neural Networks
- Markov Models and Graph Algorithms
- Clustering
- Latent Dirichlet Allocation
- Gradient Boosted Decision Trees/Random Forests
- Gaussian Processes
- ...
A/B Testing

- Randomized, controlled experiments
- Start with hypothesis for potential improvement
- Take random sample of users (say ~500k)
 - Assign half to control group (existing experience)
 - Assign other half to new experience
- Collect business-relevant metrics over time (say 1-2 months)
 - Retention
 - Engagement (hours of plays)
- Compare outcomes with statistical test
 - Significant improvement? Roll out new experience
 - No? Use insight to inform next hypothesis
Offline-Online Testing Process

- Offline Experiments
 - Hours/Days
 - Success
 - Failure

- Online A/B Tests
 - Weeks/Months
 - Success

- Deploy to all users
Evolution of our Recommendation Approach

Rating → Ranking → Page Generation

Rating: 4.7
Personalized Rating Prediction
Rating Prediction

- Based on first year progress prize
- Top 2 algorithms
- Matrix Factorization (SVD++)
- Restricted Boltzmann Machines (RBM)
- Ensemble: Linear blend
Ranking by ratings

Niche titles
High average ratings... by those who would watch it
\[\sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2} \]
Personalized Ranking
Learning to Rank

- **Approaches:**
 - **Point-wise:** Loss over items (Classification, ordinal regression, MF, ...)
 - **Pair-wise:** Loss over preferences (RankSVM, RankNet, BPR, ...)
 - **List-wise:** (Smoothed) loss over ranking (LambdaMART, DirectRank, GAPfm, ...)

- **Ranking quality measures:**
 - Recall@N, Precision@N, NDCG, MRR, ERR, MAP, FCP, ...
Example: Two features, linear model

Linear Model:
\[f_{\text{rank}}(u,v) = w_1 p(v) + w_2 r(u,v) \]
Personalized Ranking

- Popularity
- + Ratings
- + More Features & Optimized Models

Ranking improvement over baseline

0% 50% 100% 150% 200% 250% 300%
“Learning to Row”

Personalized Page Generation
Page-level algorithmic challenge

10,000s of possible rows

10-40 rows per device

Variable number of possible videos per row (up to thousands)

1 personalized page
Balancing a Personalized Page

Accurate vs. Diverse

Discovery vs. Continuation

Depth vs. Coverage

Freshness vs. Stability

Recommendations vs. Tasks
Browsing Modeling

More likely to see

Less likely
Process for creating rows

- Find Candidates
- Evidence
- Filter & Deduplicate
- Rank
- Format
- Choose
Building a page algorithmically

Approaches
1. Rule-based
2. Row-independent
3. Stage-wise
4. Page-wise
Rule-based Approach

- Create rules for location of rows
- Non-personalized layout
- Optimize by AB testing

Example:
- First: Continue Watching (if any)
- Next: Top picks
- Next: Popular on Netflix
- Next 3: Because you watched (if any)
- Next 3: Genres
- Next: Recently added
- ...

Pros:
- Backed up by AB testing
- Easy to compute
- Very familiar page layout

Cons:
- One size fits nobody
- Local optima
- Hard to add new kinds of rows
- Rules get complicated
- Still need to pick best rows within groupings
Row-independent Approach

- Treat row selection as a standard ranking problem
- Greedily rank rows by $f(r \mid u, d)$
- Sort and take top n

Approaches:
- Top-n recommendation algorithms

Pros:
- Available algorithms
- Fast
- High accuracy

Cons:
- No consideration of diversity
- People watch videos, row interaction is indirect
Stage-wise Approach

- Use information about already picked rows
- Pick next rows by $f(r \mid u, d, p_{1:n})$

- Approaches:
 - Train scoring model
 - Greedy
 - Submodular optimization
 - K-step look-ahead

Pros:
- Can balance accuracy and diversity
- Follows navigation pattern

Cons:
- May need to evaluate each row multiple times from deduping
- Still greedy
- Hard to get training data
Page-wise approach

- Optimize the whole page
- Potentially re-rank within rows
- Total page fitness $f(p | u, d)$

Approaches:
- Constrained optimization
- Approximate integer programming

Pros:
- Includes information about entire page
- Can include diversity and deduping into objective
- Able to synthesize rows

Cons:
- Computationally expensive
- Huge space of possible pages
Row Features

- Quality of items
- Features of items
- Quality of evidence
- User-row interactions
- Item-row metadata
- Recency
- Item-row affinity
- Row length
- Position on page
- Title
- Diversity
- Similarity
- Freshness
- ...

(Netlfix interface with movie thumbnails)
Page-Level Metrics

- How do you measure the quality of the homepage?
 - Ease of discovery
 - Diversity
 - Novelty
 - ...

- Challenges:
 - Position effects
 - Row-video generalization

- Approach: 2D versions of ranking quality metrics
Simple example: Recall @ row-by-column

Page Variant 1
- Drama
- Action
- Comedy

Page Variant 2
- Comedy
- Sitcoms
- Drama

Page Variant 3
- Top Picks
- Sci-Fi
- Sitcoms

User Watched
- ✔
- ✔
- ✔
- ✔
- ✔
- ✔
- ✔
- ✔
Offline Results: Recall @ row-by-column

Best personalized layout

Previous Template
Conclusions

Season 1, Ep. 3 - Tabula Rasa
2004 TV-14 43 minutes

Jack and Hurley discover an alarming secret about Kate, and the marshal's life hangs in the balance.
Evolu(on of Recommendation Approach

Rating → Ranking → Page Generation
Research Directions

- Presentation effects
- Full-page optimization
- Context Awareness
- Evidence Selection
- Global Algorithms
- Cold start
Thank You

Justin Basilico
jbasilico@netflix.com
@JustinBasilico